Multi-Target Tracking and Occlusion Handling with Learned Variational Bayesian Clusters and a Social Force Model

نویسندگان

  • Ata ur-Rehman
  • Syed M. Naqvi
  • Lyudmila Mihaylova
  • Jonathon A. Chambers
چکیده

This paper considers the problem of multiple human target tracking in a sequence of video data. A solution is proposed which is able to deal with the challenges of a varying number of targets, interactions and when every target gives rise to multiple measurements. The developed novel algorithm comprises variational Bayesian clustering combined with a social force model, integrated within a particle filter with an enhanced prediction step. It performs measurement-to-target association by automatically detecting the measurement relevance. The performance of the developed algorithm is evaluated over several sequences from publicly available data sets: AV16.3, CAVIAR and PETS2006, which demonstrates that the proposed algorithm successfully initializes and tracks a variable number of targets in the presence of complex occlusions. A comparison with stateof-the-art techniques due to Khan et al., Laet et al. and Czyz et al. shows improved tracking performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot

The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...

متن کامل

Multi-Hypothesis Social Grouping and Tracking for Mobile Robots

Detecting and tracking people and groups of people is a key skill for robots in populated environments. In this paper, we address the problem of detecting and learning socio-spatial relations between individuals and to track their group formations. Opposed to related work, we track and reason about multiple social grouping hypotheses in a recursive way, assume a mobile sensor that perceives the...

متن کامل

Handling Inter-object Occlusion for Multi-object Tracking Based on Attraction Force Constraint

This paper presents a novel social interaction relation, attraction (interaction that would lead to occlusion for inter-object) for multiobject tracking to handle occlusion issue. We propose to build attraction by utilizing spatial-temporal information from 2D image plane, such as decomposed distance between objects. Then pairwise attraction force is obtained by the modeled attraction. Lastly, ...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2016